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It is shown how the effects of the initial discharge profile, vertical drift, and boundary 
absorption (catalytic reaction) can be incorporated into a Gaussian approximation 
for the two-dimensional contaminant distribution in a parallel shear flow. Exact and 
asymptotic expressions are derived for the centroid displacement, shear-dispersion 
coefficient, and variance. Detailed results are presented for the effect of absorption 
at the bed and of vertical drift velocities upon contaminant dispersion in turbulent 
open-channel flow. For both cases the advantages of discharges close to the bed over 
surface discharges are made quantitative. 

1. Introduction 
Contaminant dispersion in a shear flow is an intrinsically multi-dimensional 

process. Material in different parts of the flow is carried along at the local flow 
velocity. Thus, soon after discharge there can be considerable shear distortions of the 
concentration distribution (Sullivan 1971, figure 1 ; Fischer et al. 1979, figure 5.15). 
In  chemical-engineering processes this distortion by the longitudinal flow can be 
further complicated by a species-dependent vertical drift velocity, or by absorption 
(catalytic reaction) at the wall. Illustrations of the extent to which a vertical drift 
can change the magnitude and distribution of concentration are given by Jayaraj 
& Subramanian (1978, figures 2 and 7, 6 and 9).  

Mathematical models for shear-flow dispersion are usually formulated in terms of 
some weighted average of the concentration profile across the flow (Sankarasubram- 
anian & Gill 1973; Krishnamurthy & Subramanian 1977; Hsieh, Lee & Gill 1979; 
Lungu & Moffatt 1982; Smith 1983a, 3). Such one-dimensional model equations have 
a formal range of validity restricted to large times after discharge, when the 
concentration profile across the flow has equilibrated. At moderate times after 
discharge the results can be seriously in error (Jayaraj & Subramanian 1978, figures 
3 , 4 ,  12, 13; Smith 1983a, figure 6;  Smith 19833, figure 10). 

The author (Smith 1982) has given a Gaussian description for the two-dimensional 
contaminant distribution in a shear flow. Unlike the one-dimensional models, it  is 
particularly efficient at moderate times after discharge. However, it was only applied 
to uniform discharges with zero drift and impermeable boundaries. The purpose of 
the present paper is to extend the model to include all three complications, i.e. 
arbitrary discharge profiles, vertical drift, and boundary absorption (catalytic 
reaction). At each level across the flow the contaminant distribution associated with 
any elementary discharge q(Q) dQ is modelled as being Gaussian. Equations are 
derived for the integrated concentration, centroid, and variance within each level. 
Closely related work, focusing attention on the large-time behaviour, has been 
presented by Barton (1984). 
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There has been much public debate in the UK concerning accidental discharges 
of high-level radioactive waste into the Irish sea from storage tanks at  the Sellafield 
nuclear reprocessing plant. A distinctive feature of transuranic elements is their 
affinity for bottom sediments. The first detailed example studied in this paper 
investigates this effect. As we might expect, the take-up of contaminants into the 
sediments is more rapid when the effective discharge height is close to the bed. The 
second illustrative example concerns the effect of vertical drift velocities. Since the 
shear is greatest near the bed, the dilution tends to be more rapid for sinking 
contaminants. Also, to take immediate advantage of the shear and enhanced dilution, 
it is preferable for discharges to be at the bed rather than near the surface. 

2. Gaussian approximation 

equation 
The equation that we shall seek to solve is the two-dimensional advection-diffusion 

a, c+ac+ua, c+a,(vc) = K~ a; c +a,(~a, c), (2 .14  

with the boundary conditions 

vc-Ka,c = /3+ c on y = y+, (2.lb) 

V C - K ~ ~ C  = -/?- c on y = y+ 

and the initial discharge distribution 

(2.1 c) 

c = q(y)S(x) at t = 0. (2.1 d) 

Here a is the reaction rate in the body of the fluid, u(y) the primary longitudinal flow, 
v the vertical drift, K~ the longitudinal diffusivity, K ( Y )  the vertical diffusivity, /3+ , /3- 
the reaction (absorption) coefficients at the boundaries, and y+, y- are the boundary 
positions. If the vertical drift is a property of the main flow, then by mass 
conservation v must be constant. However, if there is a species-dependent drift 
relative to the main flow caused by some external force field, then v can be a function 

Rather than solving (2.lu-d) numerically, as done by Jayaraj 6 Subramanian 
(1978), we shall follow Smith (1982) and Barton (1984) by seeking a Gaussian 
approximation 

of y. 

with 
2-x 5 = 7 .  

(2 .24 

(2.2b) 

Here X(y, t ;Q) and a2(y, t ;  Q) respectively are the centroid displacement and variance 
at  the level y across the flow associated with an elementary discharge at the level Q. 

For an unbounded linear shear, with constant diffusivities, this Gaussian rep- 
resentation is exact (Townsend 1951). However, in general ( 2 . 2 ~ )  must be regarded 
as being the first term in a series expansion, as explained in Appendix A. The equa- 
tions satisfied by the coefficients a(0),  X, u2 can be derived by taking the zero, first 
and second moments with respect to x of (2.la-d). Hence any errors are relegated 
to the third and higher moments. This derivation is systematized and extended in 
Appendix A. 
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A generalization to three dimensions can be achieved by allowing do) to be a 
function of z, 2. More simply, if the problem is uniform and unbounded with respect 
to z, an additional Gaussian factor can be included in the representation ( 2 . 2 ~ )  : 

with 
( 2 . 3 ~ )  

(2.3b) 

The absence of crossflow makes the z-structure much more simple than the x-structure. 
For example, the centroid has the constant value 2. 

It is possible to adapt the calculations to apply to even more complicated 
situations. For example, Doshi, Gill & Subramanian (1975) show that by a change 
of variables 

(2.la-d) also apply to the industrially relevant case in which the vertical drift is 
achieved by uniform suction through the boundary in a channel of length L. 

3. Eigenfunction expansions 
The Gaussian representation ( 2 . 2 ~ )  deals with the longitudinal structure of the 

solution. However, there still remains the task of calculating the y, t structure. The 
starting point is the equation satisfied by the amplitude factor do) (y, t ; 6 )  : 

with 

and 

a, d o )  +ado) + a,(vdo))  -a,(K a, do))  = 0, ( 3 . 1 ~ )  

( V - p + ) d 0 ) - K a y d o )  = 0 on y = y+, (3.1 b) 

( v + p - ) a ( O ) - K a , d 0 )  = 0 on y = y-, ( 3 . 1 ~ )  

d o )  = S(y-6) at t = 0 (3 . ld)  

(see Appendix A equation (A 1)  with m = 0). In  this section we will derive solutions 
for small, moderate and large times after discharge. ’ 

At small times the boundary can be regarded as being remote, and the velocity 
shear as being locally linear. Thus, the exact solution derived by Townsend (1951) 
provides the basis for an asymptotic solution. The distorted Gaussian solution for 
do) is 

with 
gdy’ 2 u v  

P2 = [I, 4 -7 J, dY’+ ... 

( 3 . 2 ~ )  

(3.26) 

The second term in (3.2b) has the obvious interpretation that for small times the 
contaminant moves upwards with the drift velocity v. 

We remark that in the absence of depletion, either in the body of the fluid (a = 0) 
or at the boundaries (/3 = 0), the equilibrium solution for the concentration profile 
across the flow is 
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A convenient choice for the reference level y* is to ensure that 

r:1clo= 1 ,  (3.4) 

where the equilibrium eigenmode $,(y) is defined in (3.8) below, and the overbar 
denotes the cross-sectional average value. 

To solve ( 3 . 1 ~ 4 )  we first factor-out $: 

u(O)(y, t ; g )  = y:(y)b(O'(y, t $ ) .  (3.5) 

This factorization removes any counterpart to a,(vdo)) in the field equation for b(O): 

a,b(O)+ a+@,~+--  b(O)-a,(Ka,b(O)) = 0, (3.6a) 

(@-+P+)b(o)--Ki3yb(o) = 0 on y = y+, (3.6b) 

[ 4K "'I 
with 

and 
( 3 . 6 ~ )  

(3.6d) 

The separation-of-variables solution for b(O) can be written 

where the eigenfunctions $m( y) and eigenvalues Am satisfy the Sturm-Liouville 
equations 

4K 
( 3 . 8 ~ )  

with 

and 

In the absence of depletion mechanisms (a = 0, +P = O)>he lowest mode is given by 

$o = y', with A, = 0 (3-9) 

(Krishnamurthy & Subramanian 1977, equation A 12). For a or /3 positive the lowest 
eigenvalue A, is positive. 

The corresponding series expansion for u(O)(y, t ; g )  is 

(Barton 1984, equation 2.5). Hence, the concentration profile across the flow 
equilibrates to 

do) A +(!I) A Y )  $ O M )  $o(Y) exp (-hot) (3.11) 

on the timescale l / ( A l  - A o ) .  A noteworthy feature is that when there is depletion there 
is a persistent dependence upon the discharge level 9. This is why, in a paper directed 
towards the large-time behaviour, Barton (1984, 92) gives attention to the early 
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development. The normalization (3.4) means that the fractional amount of contami- 
nant remaining in the fluid asymptotes to  

Neat results such as this are an important justification for analytic as opposed to 
computational studies of contaminant dispersion. 

Fischer et al. (1979, $5.5) warn that for one-dimensional (equilibrium) models, there 
might not be very much contaminant left in the flow by the time that equilibrium 
has been reached, e.g. when the loss rate A, is comparable with the decay rates A,, A, 
for other modes. Hence the need for two-dimensional non-equilibrium models. 

4. Centroid displacement 

centroid position X(y, t ; g) .  Its equation can be written 
Once do) is known, the next ingredient in the Gaussian representation ( 2 . 3 ~ )  is the 

(4.1 a )  at(a(0)x) + m ( o ) ~ + a , ( w a ( o ) ~ )  - a , ( K a , ( a ( o ) ~ ) )  = u a ( o ) ,  
with 

and 

(see Appendix A equation (A 1)  with m = 1). As in the previous section we shall 
present solutions for small, moderate and large times after discharge. 

The small-time solution for d o ) X  is simply a multiple of the distorted Gaussian 
( 3 . 2 ~ ) .  The formula for X is 

( 4 . 2 ~ )  X = tI0/Il + . . . 
where 

(4.2b) 

Thus, the centroid velocity is a weighted average of the velocity profile between 9 
and y. 

To represent the right-hand side forcing term in (4.1 a ) ,  we introduce the velocity 
coefficients 

(4.3a) 

The composite series solution for d o ) X  is given by 

where 
exp ( - A m  t )  -exp ( -An t )  Jmn(t) = (4.4b) 

An- Am 

Barton (1984, equation following 2.13). 
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At large times after discharge we have the asymptote 

Hence, the centroid position for an elementary discharge a t  the level Q has the limiting 
form x A uoot+g(Y)+B(Q) (4.6~) 
where 

(4.6b) 

In Appendix B it is shown that g ( y )  tends to be positive where u ( y )  exceeds the 
asymptotic advection velocity uoo. As might be expected, the centroid position X 
tends to be displaced forwards when either the observation level y or the discharge 
level Q is in the faster-moving part of the flow. 

For later use we record the results 

n + m  

(4.7 b )  

(4.7c) 

The dispersion coefficient notation D( 00)  anticipates the relationship between g(y)  and 
the asymptotic growth rate of the variance a2 (Lungu & Moffatt 1982, equation 2.28). 

The explicit solution (B 3) for g ( y )  derived in Appendix B leads to the neat result 

2 

D ( o o ) = - l  1 y+ -[r‘ 1 (u-uo0)$:dy’’] dy’. 
h ,A: y- 

This reveals the crucial role of the velocity shear, and the strong weighting towards 
parts of the flow with large $o or small K .  

5. Variance 
For the variance a2(y, t ;  Q) the governing equations (A 3) can be written 

a t (U( ’ )a2 )  + dU(o)C72 -k ay(WU(o)C72) - a,(K ay(do)C2)) = ~ K L  + 2KU(0)(a, x)’, 
( 5 . 1 ~ )  

(w--p+)a(o)a2-Ka,(u(o)a2) = 0 on Y = Y+, (5.1 b )  
with 

(5.1 c )  

(5 . ld)  
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Again, the small-time asymptote involves a weighted integral of the velocity profile : 

= 2 t ~ ~  +iK(a, ~ ) ~ t ~  near y = g. (5.2) 

In practice (i.e. for high-Peclet-number flows), the timescale for transverse mixing 
is usually much greater than l&u. Thus, the shear term rapidly overtakes the 
longitudinal diffusion (Townsend 1951). 

To solve (5.1~4) we put 

U(O)U2 = L + S- a(O)(X- uoo t ) 2 ,  (5.3) 

where L and S respectively are associated with longitudinal diffusion and with the 
shear : 

a, L + d~ + a,(VL) -a& a, L )  = ~ K L  a(o), (5.44 

For the three-dimensional case in the absence of crossflow, there would be no 
counterpart of S in the expression for u(O)u& 

If we introduce the notation 

then, by analogy with the solution (4.4) for a(O)X we have 

To represent the large-time asymptote we introduce the function 

Thus, at large times 

The explicit formula (B4)  for l(y) given in Appendix B shows that 1 tends to be 
positive where K ~ ( Y )  exceeds the weighted average value K ~ ~ .  In  accord with physical 
intuition, this indicates that the diffusive contribution to the variance is largest when 
the discharge or the observations are made in that part of the flow with relatively 
strong longitudinal diffusivity. 

To solve (5.4b) for S(y, t ; @ )  we pose the eigenfunction expansion 
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This, together with the solutions (4.4), (3.10) for u(O)X and do),  leads to the sequence 
of ordinary differential equations 

d S m  -+AmSm dt = 2(umm-Uoo)2t e x ~ ( - h m t ) $ m ( B )  

[cxp ( - A l  t )  -exp ( - A n  t )  m 

+2  x x UnlU,l ] (5.10) 
1 - 0  n + l  An- 

l + m  

The solutions for the eigen-coefficients Sm(t;  Q) are 

S m  = (Umm-Uoo)2t2 ~ X P  ( - A m  t )  

n + m  

(5.11) 

At large times after discharge we have the asymptotes 

1 C n  

l + m  

n + m  

By analogy with the definition (4.6b) of g(y), we define 

Also, for later use we define 

R(y) = g'2'(Y) -i [g(Y)2 -WL ( 5 . 1 4 ~ )  
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where $ ; R = O .  (5.14b) 

An integral expression for R(y) is given in Appendix B. 

- 

In  terms of g and g(2), the second moment, S ( y ,  t ;  9) has the asymptote 

s A 2 r - w  $o(i) r w  $ o ( Y )  exp ( - A 0  t )  

{to(CO)--+92+9(2)(9)+g(2)(y)+g(y)g(i)}. (5.15) 

Combining together the asymptotic results (3.11, 4 .6a,  5.8, 5.15) we can infer that 
the variance a2(y, t ;  9) has the asymptote 

a2 2t[D(oo)+K,,]-3-+2R(y)+22(y)+2R(9)+22(9).  (5.16) 

For high-Peclet-number flows the diffusive contributions to the variance are 
dominated by the shear terms. Thus, to compare the amount of spreading for different 
discharge heights 9 i t  suffices to calculate just the single function R(9) .  The symmetry 
between y and 9 is absent in the results of Smith (1982, equation 4.16) and of Barton 
(1984, equation 2.22) due to their having focused attention upon cross-sectionally 
averaged discharges and concentrations respectively. It deserves emphasis that in 
Appendix B all the quantities in (5.16) are given explicitly in terms of integrals 
involving the lowest mode $,,(y), the diffusivities K ( Y ) ,  K ~ ( Y ) ,  and the velocity profile 
U(Y 1. 

6. Open-channel flow with retention at the bed 
For turbulent open-channel flow the velocity and diffusivity profiles can be - 

modelled as 

with 

( 6 . 1 ~ )  

(6.1 6 )  

( 6 . 1 ~ )  

( 6 . l d )  

Here ZC is the bulk velocity, u* the friction velocity, k von Karman's constant (about 
0.4), h the water depth, and 7* a dimensionless roughness height. Typically u* is about +-, which implies that q* is about 0.001. Motivated by the application to accidental 
discharges of long-lived radioactive isotopes from storage tanks, we take the settling 
velocity -v, the decay rate a, and the free-surface absorption coefficient /3+ all to 
be negligibly small. Hence, we focus our attention upon the effects of retention a t  
the bed. 

If we ignore terms of order T * ,  then the field equation ( 3 . 8 ~ )  for the eigenmodes 
transforms to 

d2$, d$m 
Y(l-3) -+ dT2 ( 1  -27) -+#urn d7 $rn = 0, ( 6 . 2 ~ )  

with 

h =pm- ku* (6.2b) m h '  
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I n  the limit of zero roughness, we can ignore the boundary conditions (3.8b, c) and 
the solutions are Legendre polynomials : 

U n+m+i (2n+ 1)1(2m+ 1)t  u(o) = 3 
mn k ( - ’ )  In-ml(n+m+l)  

(Smith 1981a, $9). 

(6.3c, d )  

(6.3e) 

To leading order the boundary condition a t  the bed is 

This can be accommodated if we add the correction terms 

(6.5b) 

with 
( 6 . 5 ~ )  

As is indicated by the logarithmic term in ( 6 . 5 ~ ) ’  the effects of boundary absorption 
are predominantly local to the bed. Thus, there are only small changes to such global 
parameters as uoo, umo, u,,, umn. For example, 

which shows that the removal of contaminant near the bed has the consequence of 
very slightly increasing the asymptotic centroid velocity (at most by less than 3 %). 

An important exception is the asymptotic loss rate : 

(see figure 1 ) .  No matter how small the value of A,, a t  sufficiently large times after 
discharge it is this loss rate that  determines the amount of contaminant remaining 
in the flow. In  the limit of total retention ( B + m )  the e-folding time corresponds to 
a distance (ii/u,)2h downstream i.e. about 225 times the water depth. This is about 
12 times further than the e-folding distance for the decay of the higher modes, and 
for the vertical concentration to have become uniform. At such large distances, the 
present two-dimensional description of the concentration field is unnecessarily 
complicated, and a one-dimensional model would suffice. 

Figure 2 shows the composite lowest mode $Lo)+ @hi) for u*/U = &. The similarity 
between @,, and the logarithmic velocity profile (6.1 a )  is by no means accidental. The 
model (6.1 b )  for K is based upon Reynolds’ hypothesis that  the eddy diffusivities for 
mass and for momentum are equal. In view of the results (3.11) and (3.12) we infer 
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0 1 2 3 4 

Bed-retention coefficient, E = Bii/ug 

FIQURE 1. The dependence of the asymptotic depletion rate A, upon the retention of the bed B in 
turbulent open-channel flow. 

Shape of the lowest mode, $o 

FIQURE 2. The lowest mode $, when the non-dimensional bed-retention coefficient B = BU/u: has 
the values B = 0 (. .....); 1 (----); 00 (-); with u,/Q = &. This can be interpreted as showing 
the shape of the asymptotic concentration profile, or as the dependence of the total amount of 
contaminant remaining in the flow upon the discharge height. 

that at large times the total amount of contaminant remaining in the fluid is not 
sensitive to the precise discharge height unless the discharge is extremely close to the 
bed. At the bed itself we have the neat result 

To a first approximation this same reduction factor applies to the higher modes, and 
hence to the entire concentration field. 
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7. Open-channel flow with gravitational settling 
A simple model for the mixing of fine-grained sediments is to consider dispersion 

in open-channel flow when there is a constant vertical drift velocity v. This class of 
problem is also of interest in the context of waste disposal, and again comes under 
the general framework established in the first half of the present paper. Absorption 
at the bed or through the free surface will be ignored, and the reaction rate a taken 
to be constant or zero. 

The reference profile y(y) is given by 
1 [L]"=@$[&] V 

= r( 1 + V) r( 1 - V )  1 - 9 
with 

( 7 . 1 ~ )  

(7.1 b)  

The normalization for y involves a beta-function, which can be expressed in terms 
of gamma functions, and finally written as above with the sine function (Abramowitz 
& Stegun 1965, 56.2). Near the boundaries the balance between vertical diffusion 
and drift is possible only for the non-dimensional velocity V in the range ( - 1, 1). 
Figure 3 illustrates how the contaminant accumulates towards the upper or lower 
boundary accordingly as the vertical drift velocity is upwards or downwards. 

If we remove an additional factor of yt, then the field equation ( 3 . 8 ~ )  for the 
eigenmodes takes the form 

where 

( 7 . 2 ~ )  

(7.2b, c) 

In the limit of zero roughness the solutions for +m are Jacobi polynomials 
(Abramowitz & Stegun 1965, chapter 22) 

(7 .34 
n 11-I.J' 
j-1 3 

p m  = m(m+ 1) .  (7.3b) 

For zero drift velocity this is identical to the leading-order solution given in (6.3a, b) 
above. 

If the appropriate beta-function integral is differentiated with respect to one of its 
arguments, we can then obtain the logarithmic integral u3/ for the asymptotic 
centroid velocity uoo. The derivative of a beta function can be expressed in terms 
of digamma functions (Abramowitz & Stegun 1965, $6.3). A numerically useful form 
of the final expression for uoo is 

cot K v--- ; [6(2n+1)-1] V S } ,  (7 .44 
1-P n-1 

with 

(7.4b) 
5(3) = 1.20205, 5(5 )  = 1.03692, c(7) = 1.00834, 

c(9) = 1.00200, c(11) = 1.00049, y(13) = 1.00012, 
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0 0.5 1 .o 1.5 2.0 

Asymptotic concentration profile, y 

FIQURE 3. The equilibrium concentration profile acroas the flow for upwards (-), zero (. . . . . .), 
and downwards (----) drift velocities. 

FIQURE 4. The dependence of the asymptotic advection velocity uoo upon the vertical drift 
velocity. 

where c(n) denotes the Riemann zeta function (Abramowitz & Stegun 1965, table 
23.3). Figure 4 shows the departure of uoo from the bulk velocity U as a function 
of V.  For V > 0 the contaminant has a tendency to rise and to occupy the faster- 
moving part of - the flow, with the consequence that the weighted average advection 
velocity uoo = uy exceeds U. Conversely, when V < 0 the advection velocity is less 
than U, with a marked decrease as the contaminant becomes more closely confined to the 
bed. 

To evaluate the coefficients umo in the series (4.6b, 4.7b) for g(y) and D(co), we 
employ the Rodrigues' formula for Jacobi polynomials (Abramowitz t Stegun 1965, 
22.1 1.1 ). Integration by parts m times then yields 

(7.5) 



438 R. Smith 

- 1.0 -0.5 0 0.5 1 .o 1.5 2.0 

.Centroiddisplacement function, gk*/h 

FIGURE 5. The dependence g(7) of the centroid displacement upon the discharge height when there 
is upwards (-), zero (. . . . .), and downwards (----) drift velocities. 

At the bed, the V-dependence of the modes # exactly counterbalances that of the 
um0 weights, leaving the centroid displacement function g(0 )  independent of the 
vertical drift. However, away from the bed the role of the umo coefficients predominates. 
Thus the centroid displacement is more sensitive to the discharge height (or 
observation level) when the contaminant tends to sink (see figure 5) .  Likewise, the 
asymptotic shear-dispersion coefficient D( 00) is larger when the contaminant profile 
across the flow is weighted towards the bed, where the shear is greatest (see 
figure 6). 

The algebraic integrals (16.4.5, 16.4.10) stated by Erdelyi et al. (1954) are a 
convenient starting point for the derivation of the higher-order diagonal velocity 
coefficients u,,. The required logarithmic factor can be introduced by differentiation 
with respect to the superscripts of the Jacobi Polynomials. The differentiation of 
gamma functions leads to the occurrence of digamma functions. However, these 
conveniently cancel when we subtract uoo : 

For the off-diagonal velocity coefficients the starting point is the corrected version 
of equation (16.4.12) of Erdelyi et al. (1954). This time digamma functions do not 
arise, and the final expression is 

A guiding principle throughout the evaluation of the formidable integrals was that 
the form of the result was known in the case V = 0 (see 6 .3~- f ) .  

Armed with the values of these coefficients uoo, umo, urn,-uoo, u,, and secure in 
the knowledge that shear dispersion does indeed dominate longitudinal dispersion K~ 

for open-channel flow (Elder 1959), we can make full use of the results derived in 
the first half of this paper. For example, figure 7 gives the variance function R(7).  As 
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-1.0 -0.5 0 0.5 1 .o 
Dimensionless rise velocity, Y = ku/u. 

FIGURE 6. The dependence of the shear-dispersion coefficient D( co) upon the vertical drift 
velocity. 

1 .o 

0.8 

P 3 0.6 

3 

2 
f' 0.4 
WJ .- 

0.2 

0 

-0.3 -0.2 -0.1 0 0.1 0.2 

Variance function, Rk4/hs 

FIGURE 7. The dependence R(7) of the variance upon the discharge height when there is upwards 
(-), zero (. . . . .) and downwards (----) drift velocities. 
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1 .o 

0.8 
c. 
a- 
3 0.6 

0 
-3  - 2  - 1  0 1 

Distance relative to bulk velocity, (x- at) k*/h 

2 

-2 - 1  0 1 2 

Distance relative to bulk velocity, (x -a t )  k2/h 

- 5  -4  - 3  -2 - 1  0 1 2 

Distance relative to bulk velocity, (x- i if)  k2 /h  

FIGURE 8. Concentration contours for surface and for bed discharges (a) with zero vertical drift 
V = 0, (b )  with upwards drift V = i, and (c) with downwards drift V = -4. 
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was the case for the centroid displacement g ( v ) ,  the value of R(7)  tends to be larger 
and the sensitivity to the discharge height most marked when there is downwards 
drift. We note that, unlike the results at a fixed distance downstream (Smith 1981 b), 
at a fixed time after discharge the variance is maximized for a discharge just above 
the bed. 

To illustrate the importance of source position, figure 8 ( a )  shows the Gaussian 
approximation to the concentration for surface and for bed discharges in the case 

h v = o ,  a = o ,  t = -  
ku, 

The lateral separation of the two contaminant clouds is sufficient to permit their 
inclusion on the same figure without significant overlap, though the time is too short 
for the large-time asymptotes to be utilised. (The contours show the larger of the two 
concentrations.) The additional effect of vertical drift is included in figures 8(b ,  c) 
where the non-dimensional rise velocity V has the respective values 4, -+. In  all cases 
the concentrations are significantly smaller when the discharge is made at the bed. 

The author is grateful to the Royal Society for financial support. 

Appendix A. Hermite series 
An appropriate choice for the centroid and variance functions X and g2 ensures 

that the Gaussian approximation ( 2 . 2 ~ )  exactly reproduces the zero, first and second 
moments of c with respect to x. However, the third and higher moments are not exact 
(skewness, kurtosis, ...). This can be remedied by the inclusion of additional terms: 

with 
x-x 5=,. 

The Hermite functions He,(E) can be defined inductively 

He, = 1, He, = 5, He,+2 = 5 He,,, - ( m +  1) He,. (A 2) 

The equations satisfied by the coefficients a(,), X, r2, a@), ...,. can be obtained by 
substituting the representation (A la)  into the field equation ( 2 . 1 ~ )  and extracting 
the coefficients of He, : 

a, dm) + adrn) + a,(va(m)) -a& aI a(,)) 
= (U - a, x- 21 a, x) a(m-l )  + aI x a, a(m-l) + ay(KU(m-l )  a, x) 
+ ; t ( ( 2 K ~  - a, g 2  - v aI g 2 )  a(m-2) + K a, g 2  a, a(m-2) 

+ a ~ K ~ ( m - 2 )  a, ~ 2 )  + 2 4 3 ,  x ) ~ m - 2 ) )  xaI g ~ m - 3 )  + +K(a, q2)za(m-4) ,  (A 3 4  

with 
(v-B+)drn)-Ka I a(,) = on y = y+ (A 3 b )  
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The feature of the representation (A 1 a, b) which distinguishes it from the author's 
earlier work (Smith 1982) is the inclusion of the &dependence. The way that this has 
been done, with X, a2 and a(,) all functions of 9, ensures that the solution preserves 
the linear superposition property for varied discharge distributions q(@). Unfortu- 
nately, this makes the solution cumbersome for uniform discharges, but economical 
for point discharges. Thus, the numerical examples given at  the end of the above 
paper all concern point discharges. 

Barton (1984) follows upon the passive contaminant work of Chatwin (1970), and 
uses a Hermite-series representation with 8 independent of y . This is appropriate 
for large times after discharge, which is indeed the aspect of particular concern to 
Barton (1984). However, at moderate times the marked dependence of the variance 
upon y (Smith 1982, figures 2a, 5a)  makes this approach inefficient, with additional 
and large a(,), d2) coefficients in the series (A la ) .  

Appendix B. Formulae for the centroid and variance functions 
The eigenfunction expansion (4.6b) makes it difficult to see the relationship 

between the centroid displacement function g(y) and the velocity profile u(y). 
However, making use of the (3.8a-e) satisfied by the eigenfunctions $,(y) we can 
deduce that g(y) is solution of the vertical diffusion equation 

with 

and 
K$:a,g = 0 on y = y+, y-, 

*= 0. 

In the notation of Lungu & Moffatt (1982) F,, = $, g, and the above equations for 
g(y) are equivalent to their equations (2.22, 2.24). 

The boundary conditions (B 1b)  make it possible to integrate (B la) once to get 
a formula for a,g. A second integration compatible with the constraint (B 1 c) requires 
more subtlety. If we introduce the functions (Smith 1981 b, $ 5 )  

then the solution for g(y) can be shown to be 

It follows that g(y) tends to be positive where u(y) exceeds the asymptotic advection 
velocity uoo. 

For the function Z(y) defined by the eigenfunction expansion (5.7), the role of the 
velocity coefficients u,, is taken over by the longitudinal diffusivity coefficients K,,. 

By direct analogy with the above solution for g(y) we conclude that 
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Making use of the results (4.7a, b), we can verify that g(2)(y), as defined by the 
eigenfunction expansion (5.13), satisfies the vertical diffusion equation 

d d 
(B 5a)  

K$; ayg(2) = 0 on y = y+, y- (B 5b)  

m=o. (B 5 4  

- dy[ K $ i -  dyg (2) ] = $ ~ [ ( u - u o o ) $ ~ ~ - ~ ( u - u ~ o ) ~ l ,  

with 

and 

Instead of solving for g(2)(y), we shall go on to consider the closely related, but 
physically more important, function R(y)  defined by (5 .14~) .  From the diffusion 
equations (B l a ,  B 5a)  and the solution (B 3) for g(y), we infer that 

with 

and 

If we define (cf. Smith 1981 b, equation 5.10) 

(i.e. y-dependent counterparts to the formula (4.8) for D(ao)), then a first integral 
for equations (B 6a, b) is 

In  general, we can expect the single integral p - ( y )  to grow more rapidly away from 
the boundary y = y- than does the repeated integral D-(y ) /D(  00). Thus, R(y) would 
be increasing and the variance c2 will be larger for discharges away from the 
boundary. The second integral for equations (B 6a, b), compatible with the constraint 
(B 6c) can be written 
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